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Abstract
The generalized time-dependent harmonic oscillator is studied. Though several
approaches to the solution of this model have been available, yet a new approach
is presented here, which is very suitable for the study of cyclic solutions and
geometric phases. In this approach, finding the time evolution operator for the
Schrödinger equation is reduced to solving an ordinary differential equation for
a c-number vector which moves on a hyperboloid in a three-dimensional space.
Cyclic solutions do not exist for all time intervals. A necessary and sufficient
condition for the existence of cyclic solutions is given. There may exist some
particular time interval in which all solutions with definite parity, or even all
solutions are cyclic. Criteria for the appearance of such cases are given. The
known relation that the nonadiabatic geometric phase for a cyclic solution is
proportional to the classical Hannay angle is reestablished. However, this is
valid only for special cyclic solutions. For more general ones, the nonadiabatic
geometric phase may contain an extra term. Several cases with relatively
simple Hamiltonians are solved and discussed in detail. Cyclic solutions exist
in most cases. The pattern of the motion, say, finite or infinite, cannot be simply
determined by the nature of the Hamiltonian (elliptic or hyperbolic, etc.). For
a Hamiltonian with a definite nature, the motion can change from one pattern
to another, that is, some kind of phase transition may occur, if some parameter
in the Hamiltonian goes through some critical value.
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1. Introduction

The harmonic oscillator is one of the most familiar models in physics. It is widely used in
various fields, both classically and quantum mechanically. Several physical problems can be
described by the harmonic oscillator with time-dependent parameters [1, 2]. More generally,
such time-dependent parameters may describe approximately the interaction of the harmonic
oscillator with some external degrees of freedom. Therefore, the time-dependent harmonic
oscillator has been the subject of much theoretical research over decades [3–6]. Since the
discovery of the geometric phase [7–14], the model has attracted more attention [15–22],
because it is simple and serves as a good example for the study of geometric phases, just
like the case of particles with spin and magnetic moment moving in time-dependent magnetic
fields [23–37]. The two models are similar in that they involve similar Lie algebras. In fact,
the Hamiltonian for spin in a magnetic field is an element of the SO(3) algebra while that for
the time-dependent harmonic oscillator is one of the SO(2, 1) algebra. However, the time-
dependent harmonic oscillator is of more interest since it has a classical counterpart, and the
quantum motion can be compared with the classical one. For example, the relation between
the geometric phase and the classical Hannay angle [38–40] is an interesting subject.

There exist mainly two approaches to the solution of the time-dependent harmonic
oscillator. The main point of the first approach [3, 4] is to find an invariant operator and
its eigenstates. The second approach employs time-dependent unitary transformations [6, 16].
Here we develop another approach to the solution of the Schrödinger equation. It is a further
development of the approach previously used for spin moving in time-dependent magnetic
fields [36]. First we find an invariant operator, and then go further to obtain the time evolution
operator. It should be remarked that our method of finding the invariant operator is rather
different from that in the first approach. In that approach the problem is reduced to solving a
nonlinear differential equation. In our approach, it is reduced to solving a linear differential
equation for a three-component c-number vector, and thus is simpler. On the other hand, the
time-dependent unitary transformation approach in [16] seems even simpler than ours, but our
approach can be easily generalized to other systems where the Hamiltonian is an element of a
more complicated Lie algebra. However, the main advantage of our approach is that it is very
suitable for the study of cyclic solutions and geometric phases.

In the literature there exists some argument that cyclic solutions are available for any time
interval, say, [0, τ ] where τ is arbitrary, because one can always choose the eigenstates of
U(τ), the time evolution operator at τ , as initial conditions at t = 0. This is true. However, the
problem is that, for the time-dependent harmonic oscillator, U(τ) may have no normalizable
eigenstate. This is different from the case of spin, where no problem of normalizability
has to be considered. Obviously, normalizable states are physically more interesting than
nonnormalizable ones. Moreover, if one is interested in the geometric phase, it seems still
unclear how to define it for the nonnormalizable cyclic solutions. The difficulty lies in the
definition of the dynamical phase. If only normalizable states are to be considered, then one
should be able to tell whether there are cyclic solutions for a given τ . This is not a trivial
task even when the time evolution operator is explicitly available. In our approach, however,
the problem can be solved naturally. We will give a necessary and sufficient condition for the
existence of cyclic solutions in an arbitrarily given time interval.

It has been shown by several authors that the nonadiabatic geometric phase for a quantum
cyclic state is equal to −(n + 1/2) times the classical Hannay angle [19–21]. However, it
does not seem very clear under what restriction on the initial condition this relation is valid,
or whether modification of this relation is needed in some case where cyclic solutions exist
for less restricted initial conditions. We will reestablish the above relation and show that it is
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valid only for cyclic solutions with special initial conditions. There exist several cases where
more general cyclic solutions exist in some particular time interval. Among these cases two
are of special interest. In one of the two cases all solutions are cyclic, and in the other case all
solutions with definite parity are cyclic. We will give criteria for the appearance of such cases.
In all these cases, the nonadiabatic geometric phase contains in general an extra term which
depends on the initial condition, in addition to the one proportional to the classical Hannay
angle. Similar situations have been found in other systems [35, 36, 41].

A normalizable state can be regarded as a wave packet in the configuration space. The
motion of a wave packet can be roughly described by the change of its position and width.
For the time-dependent harmonic oscillator, we will show that if the position of a wave packet
is confined in a finite region, then its width also remains finite, and the reverse is also true.
A problem that seems unclear concerns the relation between the pattern of the motion, say,
finite or infinite, and the nature of the Hamiltonian, that is, elliptic, hyperbolic or critical (see
section 2). In simple cases where the Hamiltonian is time independent (or the time dependence
lies only in an overall factor), an elliptic Hamiltonian leads to finite motion and others lead to
infinite motion. However, if the Hamiltonian is time dependent, the situation is complicated.
We will see that for a Hamiltonian with a definite nature, say, elliptic, the motion of the wave
packet may exhibit different patterns if some parameter in the Hamiltonian takes different
values. In particular, when the parameter goes through some critical value, some kind of
phase transition occurs, that is, the motion changes from one pattern to another. At the critical
value, the motion has an independent pattern.

This paper is organized as follows. In section 2 we develop some mathematical formulae
that will be used in the subsequent sections. In section 3 a new method is presented to
derive the time evolution operator for the Schrödinger equation. In section 4 a necessary and
sufficient condition for the existence of cyclic solutions in an arbitrarily given time interval
[0, τ ] is given, and the known relation between the nonadiabatic geometric phase and the
classical Hannay angle is reestablished. In section 5 we study several cases where more cyclic
solutions are available, and give criteria for the appearance of such cases. A modification to
the above relation between the nonadiabatic geometric phase and the classical Hannay angle
is also discussed in this section. In section 6 we study several examples where explicit results
are available. The existence of cyclic solutions is discussed in detail, and it is seen that they
exist in most of the examples. The evolution of normalizable states is also studied from the
point of view of wave packets. Various patterns of motion are revealed in these examples,
and phase transition is explicitly observed. Section 7 is devoted to a brief summary. In the
appendix we briefly discuss how to extend our formalism to a more general system.

2. The model and some mathematics

The time-dependent harmonic oscillator is described by the Schrödinger equation

i h̄∂tψ(t) = H(t)ψ(t) (1a)

with the following Hamiltonian.

H(t) = ω(t)K · ng(t) (1b)

where ω(t) is a time-dependent frequency parameter, n(t) = (n1(t), n2(t), n3(t)) is a time-
dependent c-number vector and K = (K1,K2,K3) is an operator vector defined below.
In this paper, any vector a = (a1, a2, a3) has an associated vector ag = (−a1,−a2, a3),
and the scalar product between two vectors a and b always appears as (a, b) = a · bg =
ag · b = a3b3 − a1b1 − a2b2. In matrix form these are ag = ga and (a, b) = atgb = btga,
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where a and b are now column vectors and the superscript ‘t’ denotes transposition, and
g = diag (−1,−1, 1). In the following the square of a vector a2 always stands for a · ag

rather than a · a. In the above Hamiltonian we always choose ω such that n2 equals 1, −1 or
0. Thus among the components of n only two are independent, and the Hamiltonian involves
three independent parameters. The vector K is defined as

K1 = 1

2

(
µ0ω0X

2 − P 2

µ0ω0

)
K2 = −1

2
(XP + PX) K3 = 1

2

(
µ0ω0X

2 +
P 2

µ0ω0

)
(2a)

where X is the coordinate and P is the momentum, satisfying [X,P ] = i h̄, µ0 is the mass of
the particle and ω0 is some constant frequency parameter. For simplicity in notation, we define
x = √

µ0ω0X and p = P/
√

µ0ω0, which still satisfy the commutation relation [x, p] = i h̄,
then the above expressions become

K1 = 1
2 (x2 − p2) K2 = − 1

2 (xp + px) K3 = 1
2 (x2 + p2). (2b)

Note that both x and p have the same dimensionality as
√

h̄, and K has the same dimensionality
as h̄. The components of K satisfy the commutation relation

[Ki,Kj ] = −2i h̄εijkK
g

k . (3)

An equivalent form is
[
K

g

i ,K
g

j

] = −2i h̄εijkKk . This is an SO(2, 1) algebra. The Hamiltonian
is said to be elliptic, hyperbolic or critical if n2 equals 1, −1 or 0, respectively.

To solve the Schrödinger equation we need some operator formulae. We will briefly
derive them here. Let

F (ξ) = Q(ξ, b)KQ†(ξ, b) Q(ξ, b) = exp
(− 1

2 ih̄−1ξK · bg
)

(4)

where ξ is a real parameter and b is a real vector independent of ξ . This is a unitary
transformation of K. Using equation (3) it can be shown that

F ′(ξ) = bg × F g(ξ) (5)

where the prime indicates a derivative with respect to ξ . An equivalent equation is
F g′(ξ) = b × F (ξ), which is convenient in obtaining

F ′′(ξ) + b2F (ξ) = [F (ξ) · bg]b. (6)

However, equation (5) leads to F ′(ξ) · bg = 0, and thus F (ξ) · bg = F (0) · bg = K · bg .
Therefore equation (6) is simplified as

F ′′(ξ) + b2F (ξ) = (K · bg)b. (7a)

This is a simple equation. With the initial condition

F (0) = K F ′(0) = bg × Kg (7b)

the solution is easily fixed. The results are listed below.
If b2 = 1, we denote b by b+, and have

Q(ξ, b+)KQ†(ξ, b+) = [
K − (

K · bg
+

)
b+

]
cos ξ + bg

+ × Kg sin ξ +
(
K · bg

+

)
b+. (8)

When ξ = 2Nπ where N is an integer, we have Q(2Nπ, b+)KQ†(2Nπ, b+) = K, or
Q(2Nπ, b+)K = KQ(2Nπ, b+). That is, Q(2Nπ, b+), and in particular, exp(i h̄−1NπK3),
commutes with K. However, this does not mean that Q(2Nπ, b+) is a c-number, since a
c-number must commute with x and p. But we will see below that Q(4Nπ, b+) is indeed a
c-number.

If b2 = −1, we denote b by b−, and have

Q(ξ, b−)KQ†(ξ, b−) = [K + (K · b
g
−)b−] cosh ξ + b

g
− × Kg sinh ξ − (K · b

g
−)b−. (9)
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When b− = (−sin φ, cos φ, 0), the result is useful in the following sections. In this case we
denote b− by bφ and Q(ξ, b−) by Q(ξ, φ):

Q(ξ, φ) = exp
(− 1

2 i h̄−1ξK · b
g

φ

) = exp
[− 1

2 i h̄−1ξ(K1 sin φ − K2 cos φ)
]
. (10)

In particular we write down

Q(ξ, φ)K3Q
†(ξ, φ) = K3 cosh ξ − K1 sinh ξ cos φ − K2 sinh ξ sin φ. (11)

If b2 = 0, we denote b by b0, and have

Q(ξ, b0)KQ†(ξ, b0) = K + ξb
g

0 × Kg + 1
2ξ 2

(
K · b

g

0

)
b0. (12)

For a c-number vector a, one can define a transformed vector A by

K · A = Q(ξ, b)K · aQ†(ξ, b). (13)

It can be shown by straightforward calculations that A2 = a2, regardless of the values of ξ

and b. Thus the elements of the SO(2, 1) algebra, K · a, are distinguished into three classes,
characterized by whether a2 is positive, negative or zero. They cannot be connected by any
one of the above unitary transformations. For example, K3 cannot be transformed to K1 and
vice versa. Geometrically, the surface defined by a2 = 0 is a cone in the a space. Therefore,
the three classes of elements are characterized by whether a is inside, outside or on the cone.

Similarly, one can calculate the unitary transformation of x and p. Here we only write
down the result for the case with b2 = 1 (the subscript ‘+’ in the components of b+ is omitted).

Q(ξ, b+)xQ†(ξ, b+) = x

(
cos

ξ

2
− b2 sin

ξ

2

)
− p(b3 + b1) sin

ξ

2
(14a)

Q(ξ, b+)pQ†(ξ, b+) = x(b3 − b1) sin
ξ

2
+ p

(
cos

ξ

2
+ b2 sin

ξ

2

)
. (14b)

Here we see that Q(4Nπ, b+) commutes with x and p. Thus it must be a c-number, as
mentioned above.

The final point of this section concerns the eigenvalues and eigenstates of the operator
K. We are only interested in normalizable, or bound states. K1 and K2 do not have
normalizable eigenstates. The eigenvalues of K3 are knh̄ where kn = n + 1/2 and
n = 0, 1, 2, . . . . The corresponding eigenstates will be denoted by ψn. In the coordinate
representation, ψn(x) = Nn exp(−x2/2h̄)Hn(x/

√
h̄), where Hn are Hermite polynomials

and Nn = (1/2nn!
√

πh̄)1/2. If a vector e satisfies e2 > 0, then K · eg has normalizable
eigenstates. Without loss of generality, we take e2 = 1 and e3 > 0, then e can be written as

e = (sinh ξ cos φ, sinh ξ sin φ, cosh ξ). (15)

According to equation (11), K · eg = Q(ξ, φ)K3Q
†(ξ, φ). Therefore the eigenvalues of

K · eg are still knh̄, and the corresponding eigenstates are

ψe
n = Q(ξ, φ)ψn = exp

(− 1
2 i h̄−1ξK · b

g

φ

)
ψn. (16)

This result will be employed below.

3. Time evolution operator

In this section we deal with the time evolution operator for the Schrödinger equation (1). We
define a time-dependent c-number vector e(t) by the differential equation

ė(t) = −2ω(t)ng(t) × eg(t) (17a)
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where the overdot denotes differentiation with respect to t, and the initial condition

e(0) = e0 (17b)

where e0 satisfies

e2
0 = 1 e03 > 0 (17c)

and is otherwise arbitrary. We would assume that n(t) and ω(t) vary continuously, so that
any solution e(t) is well behaved. If one solution to this equation can be found, then the time
evolution operator for the Schrödinger equation can be worked out. It should be remarked
that the above equation for e(t) is the one satisfied by 〈K〉, the mean value of the operator
vector K in an arbitrary state (cf equation (27) below). More discussions can be found in the
appendix.

We take the initial state of the system to be ψ(0) = ψe0
n , that is

K · e
g

0ψ(0) = knh̄ψ(0) n = 0, 1, 2, . . . . (18)

If ψ evolves according to equation (1) and e evolves according to equation (17), then

K · eg(t)ψ(t) = knh̄ψ(t) (19)

would hold at all later times. This can be easily proved by induction.
By definition, equation (19) is valid at t = 0. We assume that it is valid at time t, what we

need to do is to show that it is also true at time t + 	t , where 	t is an infinitesimal increment
of time. In fact, using equations (1) and (17) we have

ψ(t + 	t) = ψ(t) − i h̄−1ω(t)K · ng(t)ψ(t)	t (20a)

e(t + 	t) = e(t) − 2ω(t)ng(t) × eg(t)	t. (20b)

After some simple algebra, the conclusion is achieved.
It should be remarked here that K · eg(t) is an invariant operator, so that it has time-

independent eigenvalues. Indeed, it is easy to show that

i h̄K · ėg(t) + [K · eg(t),H ] = 0. (21)

We see that once a solution e(t) is found, an invariant operator is obtained. Since e(t) satisfies
a linear differential equation, this method is convenient. Moreover, it can be easily generalized
to systems where the Hamiltonian is an element of a more complicated Lie algebra. A brief
discussion on this point is given in the appendix.

From equation (17) it is easy to show that e2(t) = e2
0 = 1. This yields |e3(t)| � 1.

As is assumed, e(t) varies continuously, thus e3(t) keeps its original sign at all later times.
Therefore, e(t) can be written in the form of equation (15), where ξ = ξ(t) and φ = φ(t), and

ψ(t) = exp[iαn(t)]Q(ξ(t), φ(t))ψn (22)

where αn(t) is a phase that cannot be determined by the eigenvalue equation. However, αn(t)

is not arbitrary. To satisfy the Schrödinger equation, it should be determined by the other
variables ξ(t) and φ(t). In fact, the above equation yields

(ψ(t), ψ(t + 	t)) = 1 + iα̇n(t)	t + (ψn,Q
†(ξ, φ)∂tQ(ξ, φ)ψn)	t. (23)

Using the formula [42]

eF(t)∂t e−F(t) = −
∫ 1

0
eλF(t)Ḟ (t) e−λF(t) dλ (24)

where F(t) is any operator depending on t, then using equation (9), and noting that
(ψn,K1ψn) = (ψn,K2ψn) = 0, we obtain

(ψ(t), ψ(t + 	t)) = 1 + iα̇n(t)	t − 1
2 iknφ̇(t)[cosh ξ(t) − 1]	t. (25)
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On the other hand, from equation (20) we have

(ψ(t), ψ(t + 	t)) = 1 − i h̄−1ω(t)u(t) · ng(t)	t (26)

where

u(t) = (ψ(t),Kψ(t)). (27)

This definition will be repeatedly used below. It is easy to show that u(t) satisfies the same
equation as e(t), and for the above initial state u(0) = knh̄e0, so we have u(t) = knh̄e(t).
Comparing the two results above and taking this relation into account, we obtain

α̇n(t) = 1
2knφ̇(t)[cosh ξ(t) − 1] − knω(t)e(t) · ng(t). (28)

Therefore

αn(t) − αn(0) = knα(t) (29)

where

α(t) = 1

2

∫ t

0
φ̇(t ′)[cosh ξ(t ′) − 1] dt ′ −

∫ t

0
ω(t ′)e(t ′) · ng(t ′) dt ′. (30)

Substituting into equation (22) we obtain

ψ(t) = Q(ξ(t), φ(t)) exp[i h̄−1α(t)K3]Q†(ξ(0), φ(0))ψ(0). (31)

We denote the time evolution operator as U(t), defined by the equation ψ(t) = U(t)ψ(0)

with an arbitrary ψ(0), then the above equation is equivalent to

U(t)ψe0
n = Q(ξ(t), φ(t)) exp[i h̄−1α(t)K3]Q†(ξ(0), φ(0))ψe0

n . (32)

Now an arbitrary normalizable initial state ψ(0) can be expanded as

ψ(0) =
∑

n

cnψ
e0
n . (33)

Applying U(t) to both sides of this equation, using equation (32), and noting that the operators
on the right-hand side of that equation are independent of n, we immediately realize that
equation (31) is in fact valid for an arbitrary initial state. Thus we arrive at the result

U(t) = exp
[− 1

2 i h̄−1ξ(t)K · b
g

φ(t)
]

exp[i h̄−1α(t)K3] exp
[

1
2 i h̄−1ξ(0)K · b

g

φ(0)
]
. (34a)

Using equation (9), it can be recast in the form

U(t) = exp
[− 1

2 i h̄−1ξ(t)K · b
g

φ(t)
]

exp
[

1
2 i h̄−1ξ(0)K · b

g

φ(0)
]

exp
[
i h̄−1α(t)K · e

g

0

]
.

(34b)

Equation (34b) is suitable for the general discussions below, while equation (34a) may be
more convenient for practical calculations.

Let us make some remarks on the result. First, we see that once a solution of equation (17)
is found, the time evolution operator for equation (1) is available. The result depends formally
on e0, but e0 is merely an auxiliary object, hence the result must be essentially independent
of it, though it might be difficult to prove this explicitly. On the other hand, it is the flexibility
in the choice of e0 that makes it convenient for the general discussions of cyclic solutions.
In practical calculations, one should choose a solution e(t) that is as simple as possible such
that U(t) can be easily reduced to the simplest form. Second, the operator U(t) depends not
only on e(t), but also on the history of it. This is obvious from equation (30). Third, though
φ(t) is indefinite when ξ(t) = 0, it is obvious that U(t) is well behaved everywhere. Fourth,
by straightforward calculations it can be shown that i h̄∂tU(t) = ω(t)K · ng(t)U(t) and
U(0) = 1, as expected. In other words, though U(t) is obtained by considering the evolution
of normalizable states, it is also valid for nonnormalizable ones.



1352 Q-G Lin

4. Cyclic solutions and geometric phases

Now we can go further to discuss cyclic solutions in any time interval [0, τ ], where τ is an
arbitrarily given time. These cyclic solutions are not necessarily cyclic in subsequent time
intervals with the same length, say, [τ, 2τ ].

Since equation (17) is a linear differential equation, the general solution e(t) must depend
on the initial vector e0 linearly. Thus it can be written in a matrix form

e(t) = E(t)e0 (35)

where e(t) and e0 are column vectors, and E(t) is a 3 × 3 matrix which is obviously
real. If both e(1)(t) and e(2)(t) are solutions to equation (17), it is easy to show that
e(1)(t) · e(2)g(t) = e(1)(0) · e(2)g(0). Therefore the matrix E(t) satisfies

Et(t)gE(t) = g. (36)

This yields det E(t) = ±1. As is assumed, E(t) varies continuously, and det E(0) = 1, so
that det E(t) = 1. Therefore the product of the three eigenvalues of E(t) must be 1, and none
can be zero. Now if eσ is an eigenvector with eigenvalue σ , that is, Eeσ = σeσ , it can be
easily shown that Et(geσ ) = σ−1(geσ ). This means that σ−1 is an eigenvalue of Et, and thus
an eigenvalue of E. Therefore the eigenvalues of E(t) should be {1, σ (t), σ−1(t)}. Since E is
real, σ ∗ is its eigenvalue if σ is one. Therefore, if σ(t) is complex, it must be unit: |σ(t)| = 1.

If σ(τ) �= 1 at the time τ , one eigenvector η(τ ) of the matrix E(τ) with eigenvalue 1 can
be found, which satisfies E(τ)η(τ) = η(τ). It can be taken as real. η2(τ ) may be positive,
negative or zero, depending on E(τ) and τ . First we consider the case with

η2(τ ) > 0. (37)

Because η(τ ) is only determined up to a constant factor, we can choose that constant such that
η2(τ ) = 1 and η3 > 0. Then we can take

e0 = η(τ ) (38)

as the initial condition in equation (17), and have e(τ ) = E(τ)e0 = E(τ)η(τ) = η(τ) = e0,
that is

e(τ ) = e0. (39)

This means that ξ(τ ) = ξ(0) and bφ(τ ) = bφ(0), and leads to

U(τ) = exp
[
i h̄−1α(τ)K · e

g

0

]
. (40)

Now it is clear that with the initial condition ψ(0) = ψe0
n (n = 0, 1, 2, . . .), we have a cyclic

solution in the time interval [0, τ ]. More specifically, ψ(τ) = eiδnψ(0), where the total phase
change is δn = knα(τ), mod 2π , with α(τ) given by

α(τ) = 1

2

∫ τ

0
φ̇(t)[cosh ξ(t) − 1] dt −

∫ τ

0
ω(t)e(t) · ng(t) dt. (41)

For the present state, u(t) = knh̄e(t), so the dynamic phase βn = −h̄−1
∫ τ

0 〈H(t)〉 dt turns out
to be

βn = −kn

∫ τ

0
ω(t)e(t) · ng(t) dt. (42)

Therefore the nonadiabatic geometric phase γn = δn − βn is given by

γn = −kn	θg mod 2π (43)
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where

	θg = −1

2

∫ τ

0
φ̇(t)[cosh ξ(t) − 1] dt = −1

2

∫ τ

0

e1(t)ė2(t) − ė1(t)e2(t)

e3(t) + 1
dt (44)

will be shown to be the classical Hannay angle below. Because e2(t) = 1 and e3(t) > 0,e(t)

moves on the upper sheet of a hyperboloid. This is a basic consequence of the fact that the
Hamiltonian is an element of the SO(2, 1) algebra. The above integral can be recast in two
other forms

	θg = ∓1

2

∫
S

dS√
e2

1 + e2
2 + e2

3

= ∓1

2

∫
S12

dS12√
1 + e2

1 + e2
2

(45)

where S is the surface enclosed by the closed trace of e(t) on the hyperboloid, and dS the
surface element; S12 is the projection of S on the e1e2 plane, and dS12 the area element; the
upper (lower) sign corresponds to an anticlockwise (clockwise) trace of e(t). The geometric
nature of the Hannay angle is obvious from the above expression, because it depends only on
the closed trace of e(t), but not on the details of the traversing process. Because of the relation
(43), the geometric nature of the nonadiabatic geometric phase is also obvious.

Thus equation (37) is a sufficient condition for the existence of cyclic solutions. Under
this condition there exists at least a denumerable set of normalizable cyclic solutions in the
time interval [0, τ ]. Of course, they may be trivial ones in some cases. All phases can be
expressed in terms of the vector e(t). The relation between the nonadiabatic geometric phase
and the Hannay angle is reestablished.

States with initial condition other than the above ones are in general not cyclic, even
though in these initial states u(0) points in the direction of e0 such that u(τ ) = u(0).
However, if α(τ)/π happens to be a rational number, more cyclic solutions are available, and
the above relation between the nonadiabatic geometric phase and the Hannay angle would
need modification for these cyclic solutions. This will be discussed in the next section.

If η2(τ ) � 0, one can still take e(0) = η(τ ) as the initial condition for equation (17a), and
have e(τ ) = e(0). However, this solution cannot be used in the time evolution operator (34a),
(34b) and no similar discussions to the above are available. In fact, there is no normalizable
cyclic solution in this case, since the condition (37) is also a necessary one. This is proved
below.

If there exists one normalizable cyclic solution in the time interval [0, τ ], that is,
ψ(τ) = eiδψ(0), then in this state u(τ ) = u(0), or u(τ) = u(0) in the form of column
vectors. As pointed out before, u(t) satisfies the same equation as e(t), thus u(τ) = E(τ)u(0).
Comparing the two relations we obtain E(τ)u(0) = u(0). In other words, u(0) is an
eigenvector of E(τ) with eigenvalue 1. The remaining point is to show that u2(0) > 0.
Indeed, for any normalizable state ψ(t), it is not difficult to show that u2(t) � h̄2/4 > 0, by
using the Schwarz inequality.

To conclude this section let us work out the Hannay angle in terms of e(t). We denote
the classical coordinate by qc and momentum by pc, and define a vector I as

I1 = 1
2

(
q2

c − p2
c

)
I2 = −qcpc I3 = 1

2

(
q2

c + p2
c

)
. (46)

The classical Hamiltonian is now Hc = ω(t)I · ng(t), and the evolution of qc and pc are
governed by the canonical equations of motion. It is easy to show that I = I · eg(t) is an
invariant. This leads to a quadratic equation in qc and pc:

(e3 + e1)p
2
c + 2e2qcpc + (e3 − e1)q

2
c = 2I. (47)

If e2 = 1, this describes an ellipse on the qcpc plane, whose area is 2πI . The ellipse changes
its shape when e(t) varies with time. If e(τ ) = e(0), the ellipse at the time τ coincides with
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that at the initial time. This is a classical nonadiabatic cyclic evolution. The qc and pc can be
expressed in terms of I and its canonical variables θ as

qc(θ, I,e) =
√

2I (e3 + e1) cos θ pc(θ, I,e) = −
√

2I

e3 + e1
(e2 cos θ + sin θ). (48)

Using e2 = 1, we have dpc ∧ dqc = I cos2 θ de1 ∧ de2/e3, and the contour average is
〈dpc ∧ dqc〉 = I de1 ∧ de2/2e3. According to [40], 	θg = −∂I

∫ 〈dpc ∧ dqc〉, we arrive at

	θg = −1

2

∫
S12

de1 ∧ de2

e3
. (49)

Note that de1 ∧ de2 corresponds to dS12 (−dS12) for an anticlockwise (clockwise) trace of

e(t), and e3 =
√

1 + e2
1 + e2

2, this is the same as equation (45). It is independent of I.

5. More on cyclic solutions and geometric phases

In the last section we have shown that equation (37) is a sufficient and necessary condition for
the existence of cyclic solutions in the time interval [0, τ ]. Under this condition, there exists
a denumerable set of cyclic solutions. In this section we discuss some special cases where
more general cyclic solutions are available. We will see that the simple relation (43) has to be
modified.

Before discussing these cases, we define

x̄(t) = (ψ(t), xψ(t)) p̄(t) = (ψ(t), pψ(t)) (50)

for any state ψ(t), and study their evolution with time. According to the Schrödinger equation,
they satisfy the equation of motion:

˙̄x = ω[n2x̄ + (n1 + n3)p̄] ˙̄p = ω[(n1 − n3)x̄ − n2p̄]. (51)

This is the same as that for the classical variables qc and pc, since the Hamiltonian is quadratic
in x and p. We denote a two-component column vector q = (x̄, p̄)t. Because the above
equation is linear, we have

q(t) = Eq(t)q(0) (52)

where Eq(t) is a 2 × 2 evolution matrix independent of q(0). Next we define a vector v(t) as

v1 = 1
2 (x̄2 − p̄2) v2 = −x̄p̄ v3 = 1

2 (x̄2 + p̄2). (53)

It is straightforward to show that v(t) satisfies the same equation of motion as e(t) or u(t).
Therefore the evolution matrix for v(t) is E(t). On the other hand, the above definition can
be written as

vi(t) = 1
2q t(t)Jiq(t) (54)

where

J1 = σz J2 = −σx J3 = 1 (55)

and the σ are Pauli matrices. Substituting equation (52) into equation (54), we have

vi(t) = 1
2q t(0)

[
Et

q(t)JiEq(t)
]
q(0). (56)

Now any 2 × 2 matrix can be expanded in terms of the above Ji and J0 = iσy . Note that Ji are
symmetric while J0 is antisymmetric, and the matrices Et

q(t)JiEq(t) are symmetric, we have

Et
q(t)JiEq(t) = aij (t)Jj . (57)
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It is easy to show that tr(JiJj ) = 2δij , and this yields aij (t) = 1
2 tr

[
Et

q(t)JiEq(t)Jj

]
.

Substituting into equation (56), we obtain vi(t) = aij (t)vj (0). Therefore, Eij (t) = aij (t),
that is

Eij (t) = 1
2 tr

[
Et

q(t)JiEq(t)Jj

]
. (58)

In other words, if the classical equation of motion is solved, which gives Eq(t), then E(t) can
be obtained by simple algebraic calculations. This indicates a relation between our formalism
and those of some previous authors, who find the time evolution operator of the Schrödinger
equation by solving the classical equation of motion [16, 6]. However, our formalism, where
e(t) plays the central role, is more convenient for the discussions of cyclic solutions and
geometric phases, for example, in obtaining the necessary and sufficient condition (37). In
practical calculations, it is usually more convenient to solve equation (17) directly than using
the above relation. However, this relation is convenient for some general discussions. For
example, when Eq(t) = ±1, it is obvious that Eij (t) = δij , or E(t) = 1. This will be useful
below.

Now we go into the main subject of this section. On the premise of equation (39), the time
evolution operator is given by equation (40), where α(τ) depends on the direction of e0. If it
happens that α(τ)/π is a rational number, then more cyclic solutions are available. Of special
interest are the cases where α(τ) = 2Nπ and α(τ) = (2N + 1)π . These will be discussed
separately.

5.1. α(τ) = 2Nπ

In this case U(τ) becomes a c-number. In fact, comparing equations (40) and (4), we find that
U(τ) = Q(−2α(τ),e0). If α(τ) takes the above value, then U(τ) = Q(−4Nπ,e0), which
has been shown to be a c-number in section 2. The value of this number can be obtained by
applying U(τ) to a specific state, say, ψ

e0
0 , the ground state of K · e

g

0 , which gives the result

U(τ) = eiNπ . (59)

Several consequences can be deduced in this case.
(1) All solutions are cyclic in the time interval [0, τ ], including nonnormalizable states,

though we are only interested in normalizable ones.
(2) Let ẽ0 = (sinh ξ̃0 cos φ̃0, sinh ξ̃0 sin φ̃0, cosh ξ̃0), where ξ̃0 and φ̃0 are arbitrary. One

can choose ψ(0) = ψ
ẽ0
0 = Q(ξ̃0, φ̃0)ψ0 as an initial state such that u(0) = h̄ẽ0/2. In the

state ψ(t) with the above initial condition ψ(0), we have u(t) = h̄ẽ(t)/2, where ẽ(t) is the
solution to equation (17a) with the initial condition ẽ0, because u(t) and ẽ(t) satisfy the same
equation. Now

u(τ ) = (ψ(τ),Kψ(τ)) = (ψ(0), U †(τ )KU(τ)ψ(0)) = (ψ(0),Kψ(0)) = u(0). (60)

Therefore

ẽ(τ ) = ẽ0. (61)

Because ξ̃0 and φ̃0 are arbitrary, this means that the evolution matrix E(t) is a unit matrix at
the time τ

E(τ) = 1. (62)

In this case, we have obviously σ(τ) = 1, that is, all three eigenvalues of E(τ) are 1. The
inverse is not true, however. In some cases we have three eigenvalues all equal to 1, but E(τ)

cannot be diagonalized and is, of course, not a unit matrix (see section 6).
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(3) Now we take ẽ0, different from e0, as the initial condition for equation (17a), and
using ẽ(t) instead of e(t) in equation (34b), we obtain

U(τ) = exp
[
i h̄−1α̃(τ )K · ẽ

g

0

]
(63)

where α̃(τ ) is given by equation (41), with e(t), ξ(t) and φ(t) replaced by ẽ(t), ξ̃ (t) and
φ̃(t), respectively. This must be equal to that in equation (59), however. Thus we should have
α̃(τ ) = 2Ñπ , and Ñ − N must be an even integer. Actually, we will show that α̃(τ ) = α(τ),
or Ñ = N .

Consider two initial unit vectors e0 and ẽ0, whose difference δe0 = ẽ0 − e0 is infinitesimal
(then δe0 · eg

0 = 0). The difference in α(τ), according to equation (41), must be infinitesimal
because the difference in e(t), and thus ξ(t) and φ̇(t) are all infinitesimal. Therefore α(τ) and
thus α(τ)/π are continuous functions of e0. Now that α(τ)/π can take only on even integers,
an obvious consequence is that α(τ) is a constant, independent of ξ0 and φ0.

(4) Consider a cyclic solution in [0, τ ] with an arbitrary initial condition ψ(0) which
is normalizable. The average value of K in ψ(0) is denoted by u(0) as before. Since
u2(0) � h̄2/4 > 0, we define u0 =

√
u2(0)/h̄ which is dimensionless, and introduce

e0 = u(0)/h̄u0. (64)

Obviously, e2
0 = 1, and e03 > 0 because u3(0) > 0, thus this e0 can be used as the initial

condition in equation (17). At later times, e(t) = u(t)/h̄u0. The dynamic phase is

β = −h̄−1
∫ τ

0
ω(t)u(t) · ng(t) dt. (65)

Though α(τ) = 2Nπ is independent of e0, we must take the one given by equation (64) such
that the second term in equation (41) can be related to the dynamic phase above. Then

β = u0[α(τ) + 	θg] = u0(2Nπ + 	θg) (66)

where 	θg is calculated by substituting the above e(t) into equation (44). Because of
equation (59), the total phase change is δ = Nπ , mod 2π . Therefore, the geometric phase
γ = δ − β turns out to be

γ = −u0	θg − (
u0 − 1

2

)
2Nπ mod 2π. (67)

Here the first term is the familiar one, but an extra term appears, which depends on the initial
condition. It vanishes (mod 2π of course) when u0 − 1/2 is an integer, especially when the
initial state is an eigenstate of K · eg

0 (it cannot be an eigenstate of K · ẽg

0 with some other ẽ0

since otherwise u(0) would point in the direction of ẽ0) such that u(0) = knh̄e0 and u0 = kn.
In the latter case it reduces to equation (43) as expected.

(5) We have seen that equation (39) plus the condition α(τ) = 2Nπ leads to equation (59),
and as a result, all solutions are cyclic in the time interval [0, τ ]. If e(t) is complicated, however,
it is not convenient to use the above criterion because it may be difficult to calculate α(τ).
Thus some other convenient criterion is of interest. Now we give a necessary and sufficient
condition for equation (59):

Eq(τ) = 1 ⇐⇒ U(τ) = eiNπ . (68)

First, suppose that U(τ) = eiNπ . For arbitrarily given values x0 and p0, it is easy to find
an initial state ψ(0) such that x̄(0) = x0 and p̄(0) = p0. It is obvious that x̄(τ ) = x̄(0),

p̄(τ ) = p̄(0). Since x(0) and p(0) are arbitrary, we obtain Eq(τ) = 1. Second, suppose that
Eq(τ) = 1. Then we have E(τ) = 1 as mentioned below equation (58), and e(τ ) = e0 for any
e0. Now we choose e0 = (0, 0, 1), and have from equation (40) U(τ) = exp[i h̄−1α(τ)K3].
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On the other hand, Eq(τ) = 1 leads to x̄(τ ) = x̄(0) and p̄(τ ) = p̄(0) for an arbitrary ψ(0),
that is

(ψ(0), U †(τ )xU(τ)ψ(0)) = (ψ(0), xψ(0))

(ψ(0), U †(τ )pU(τ)ψ(0)) = (ψ(0), pψ(0)).
(69)

Since ψ(0) is arbitrary, we should have U †(τ )xU(τ) = x and U †(τ )pU(τ) = p. From
equation (14), this is valid only when α(τ) = 2Nπ , which leads to U(τ) = eiNπ .

5.2. α(τ) = (2N + 1)π

In this case, U(τ) = exp
[
i h̄−1α(τ)K · e

g

0

] = Q(ξ0, φ0) exp[i h̄−1(2N + 1)πK3]Q†(ξ0, φ0),
where we have used equation (11) in obtaining the second equality. As pointed out in section 2,
exp[i h̄−1(2N + 1)πK3] commutes with K, and thus commutes with Q(ξ0, φ0), we have

U(τ) = exp
[
i h̄−1(2N + 1)πK · e

g

0

] = exp[i h̄−1(2N + 1)πK3] = eiNπ exp(i h̄−1πK3).

(70)

Several consequences similar to those in subsection 5.1 can be deduced in this case.
(1) All normalizable solutions with definite parity are cyclic in the time interval [0, τ ]. In

fact, an initial state with definite parity can be expanded as

ψ+(0) =
∞∑

n=0

a2nψ2n ψ−(0) =
∞∑

n=0

a2n+1ψ2n+1 (71)

where the superscript + (−) indicates even (odd) parity, and time evolution does not change
the parity of an initial state since U(t) only involves K and K is quadratic in x and p. It is
easy to see that

ψ±(τ ) = exp(iδ±)ψ±(0) (72)

where

δ± = ±(
N + 1

2

)
π mod 2π. (73)

(2) Repeat the discussions of the second point in subsection 5.1. Though U(τ) is not a
c-number now, it commutes with K. Thus equation (60) is still valid, and so is equation (62).

(3) As before, we take ẽ0, different from e0, as the initial condition for equation (17a),
and obtain

U(τ) = exp
[
i h̄−1α̃(τ )K · ẽ

g

0

] = Q(ξ̃0, φ̃0) exp[i h̄−1α̃(τ )K3]Q†(ξ̃0, φ̃0). (74)

This must be equal to that in equation (70), however. Because exp[i h̄−1(2N + 1)πK3]
commutes with Q(ξ̃0, φ̃0), we have exp[i h̄−1α̃(τ )K3] = exp[i h̄−1(2N + 1)πK3]. This means
that α̃(τ ) = (2Ñ + 1)π , and Ñ − N must be an even integer. By arguments similar to those
in subsection 5.1, we can conclude that α̃(τ ) = α(τ).

(4) Consider a cyclic solution in [0, τ ] with a normalizable initial state ψ(0) which is
of definite parity. We define e0 as in equation (64) and use it as the initial condition in
equation (17), then e(t) = u(t)/h̄u0. The dynamic phase is of the form in equation (65). As
before, we use the above e(t) to calculate α(τ), then the second term in α(τ) can be related to
the dynamic phase, and

β = u0[α(τ) + 	θg] = u0[(2N + 1)π + 	θg] (75)

where 	θg is calculated by substituting the above e(t) into equation (44). The total phase
change has been given in equation (73). Therefore the geometric phase turns out to be

γ± = −u0	θg − (
u0 ∓ 1

2

)
(2N + 1)π mod 2π. (76)
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Here an extra term appears once again, which depends on the initial condition. It vanishes
(mod 2π of course) when u0 ∓ 1/2 happens to be an even integer. For example, if the initial
state is an eigenstate of K · e

g

0 (then it is of definite parity) such that u(0) = knh̄e0 and
u0 = kn, then the extra term vanishes as expected.

(5) As in subsection 5.1, we give a necessary and sufficient condition for equation (70)
which may be more convenient:

Eq(τ) = −1 ⇐⇒ U(τ) = exp[i h̄−1(2N + 1)πK3]. (77)

First, suppose that U(τ) = exp[i h̄−1(2N + 1)πK3]. Using equation (14), it is easy to show
that

U †(τ )xU(τ) = −x U †(τ )pU(τ) = −p. (78)

For arbitrarily given values x0 and p0, it is easy to find an initial state ψ(0) such that x̄(0) = x0

and p̄(0) = p0. The above equation yields x̄(τ ) = −x̄(0), p̄(τ ) = −p̄(0). Since x(0) and
p(0) are arbitrary, we obtain Eq(τ) = −1. Second, suppose that Eq(τ) = −1. Then we have
E(τ) = 1, and e(τ ) = e0 for any e0. Now we choose e0 = (0, 0, 1), and have from
equation (40) U(τ) = exp[i h̄−1α(τ)K3]. On the other hand, Eq(τ) = −1 leads to
x̄(τ ) = −x̄(0) and p̄(τ ) = −p̄(0) for an arbitrary ψ(0). Thus equation (78) must be true, and
from equation (14), we have α(τ) = (2N+1)π , which leads to U(τ) = exp[i h̄−1(2N+1)πK3].

5.3. Other cases

Finally we briefly discuss the case where α(τ)/π is a rational number other than an integer.
More specifically, let α(τ) = r0π/s0, where both r0 and s0 are integers and prime to each
other, and s0 � 2. In addition to the denumerable set of cyclic solutions discussed before, we
also have other ones in this case. For example, the initial conditions

ψ(0) =
∞∑

s=0

asψ
e0
2s0s

= Q(ξ0, φ0)

∞∑
s=0

asψ2s0s

∞∑
s=0

|as |2 = 1 (79)

give cyclic solutions in the time interval [0, τ ]. In fact, it is easy to show that ψ(τ) = eiδψ(0)

with δ = α(τ)/2 = r0π/2s0. In the above initial states, we have u(0) = h̄u0e0 where
u0 = 2s0s̄ + 1/2 and s̄ = ∑∞

s=0 s|as |2. The dynamic phase is β = u0[α(τ) + 	θg]. Thus the
geometric phase is

γ = −u0	θg − 2r0s̄π mod 2π. (80)

We find once again that an extra term appears in the geometric phase. This term disappears
when s̄ happens to be an integer, especially when the above initial state involves only one
term.

6. Some examples with explicit results

In this section we calculate some simple examples where explicit analytic results are available.
The Hamiltonian involved in these examples may be elliptic, hyperbolic or critical. The motion
of the particle exhibits various possible patterns. A normalizable state can be regarded as a
wave packet in the configuration space. The centre of the wave packet is characterized by x̄ and
its velocity characterized by p̄, and their evolution is governed by the matrix Eq(t). If Eq(t) is
finite at all times (for example, its elements are trigonometric functions of t), then the motion is
said to be finite, because both x̄ and p̄ will remain finite at all times. Otherwise it is said to be
infinite. The latter case contains still different patterns, for example, Eq(t) may increase with
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time or may be oscillating with increasing amplitude. Other quantities that characterize a wave
packet are mainly the variances 	x =

√
〈(x − x̄)2〉 and 	p =

√
〈(p − p̄)2〉. They can be

regarded as the width of the wave packet in the coordinate and momentum space, respectively.
From equation (58) we see that if Eq(t) is finite (infinite), then E(t) is essentially finite
(infinite) as well. We will see that the time evolution of (	x)2 and (	p)2 is essentially
governed by E(t), thus the width and the position of a wave packet exhibit similar patterns of
motion in this system. In other words, if the wave packet moves in a confined region, then its
width also remains finite, and the opposite is also true. In fact, we can define a new vector
w(t) by

w(t) = u(t) − v(t). (81)

Since both u(t) and v(t) satisfy the same equation as e(t), it is obvious that w(t) also satisfies
the same equation, and thus its time evolution is governed by the matrix E(t). On the other
hand, it is easy to show that

w1 = 1
2 [(	x)2 − (	p)2] w3 = 1

2 [(	x)2 + (	p)2] (82a)

w2 = − 1
2 〈(x − x̄)(p − p̄) + (p − p̄)(x − x̄)〉. (82b)

Therefore,

(	x)2 = w3 + w1 (	p)2 = w3 − w1 (83)

and their time evolution is essentially governed by E(t).
We will see that the pattern of motion does not have a simple relation with the nature

of the Hamiltonian. For a Hamiltonian with a definite nature, say, elliptic, the wave packet
may exhibit different patterns of motion if some parameter in the Hamiltonian takes different
values. And, when the parameter goes through some critical value, the motion changes from
one pattern to another. This is somewhat like a phase transition, and seems not to have been
noticed before.

6.1. n = constant

The first case is the simplest one where n is a constant vector and ω(t) is an arbitrary function
of time. Let

ϕ(t) =
∫ t

0
ω(t ′) dt ′ (84)

and if e(t) = e[ϕ(t)] obeys

e′(ϕ) = −2ng × eg(ϕ) (85)

where the prime indicates a derivative with respect to ϕ, then equation (17a) is satisfied. This
is similar to equation (5) and can be solved in the same way. The result depends on the nature
of n, and will be given separately.

(1) If n2 = 1, the solution reads

e(t) = [e0 − (e0 · ng)n] cos 2ϕ + e
g

0 × ng sin 2ϕ + (e0 · ng)n. (86)

To obtain the evolution matrix E(t), we should write down the components of n:

n = (sinh ξn cos 2ϕn, sinh ξn sin 2ϕn, cosh ξn) (87)

where ξn and ϕn are arbitrary. The matrix E(t) is somewhat complicated, but it can be written
as the product of several simple matrices

E(t) = R(ϕn)S(ξn, 1)W(a)
+ (ϕ)S−1(ξn, 1)R−1(ϕn) (88)
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where

W(a)
+ (ϕ) =


cos 2ϕ −sin 2ϕ 0

sin 2ϕ cos 2ϕ 0
0 0 1


 (89)

and the matrices R and S, which will be repeatedly used below, are defined by

R(ϕn) =

cos 2ϕn −sin 2ϕn 0

sin 2ϕn cos 2ϕn 0
0 0 1


 S(ξn, ε) =


ε cosh ξn 0 sinh ξn

0 1 0
sinh ξn 0 ε cosh ξn


 (90)

where ε = ±1. The eigenvalues of E(t) can be easily found to be {1, ei2ϕ, e−i2ϕ}. The
eigenvector corresponding to the eigenvalue 1 is η = n. This can be easily seen from
equation (86), where e0 = n leads to e(t) = n at any time t. Because n2 = 1, there
exist normalizable cyclic solutions at any time interval [0, τ ]. However, most of these cyclic
solutions are trivial ones. Actually, the time evolution operator can be obtained by direct
integration in this case:

U(t) = exp(−i h̄−1ϕK · ng). (91)

If ψ(0) is an eigenstate of K · ng , then ψ(t) is different from ψ(0) only by a phase factor,
thus it is cyclic in any time interval but is trivial. Only when ϕ(τ)/π takes rational numbers
do we have nontrivial cyclic solutions in [0, τ ].

The evolution matrix Eq(t) can be similarly found to be

Eq(t) = Rq(ϕn)W
(a)
q+ (ϕ)R−1

q (ϕn) (92)

where

W(a)
q+ (ϕ) =

(
cos ϕ exp(ξn) sin ϕ

−exp(−ξn) sin ϕ cos ϕ

)
(93)

and

Rq(ϕn) =
(

cos ϕn sin ϕn

−sin ϕn cos ϕn

)
. (94)

Obviously, when ϕ(τ) = −Nπ,Eq(τ) = (−1)N and E(τ) = 1. This includes the two most
interesting cases discussed in section 5.

The time evolution operator (91) can also be obtained by our method. Taking the simplest
solution e(t) = n, we have ξ(t) = ξ0 = ξn, φ(t) = φ0 = 2ϕn and α(t) = −ϕ(t). When these
are substituted into equation (34b), we obtain the above result. Moreover, the above condition
ϕ(τ) = −Nπ for Eq(τ) = (−1)N is equivalent to α(τ) = Nπ , as expected.

To verify equation (67) by explicit calculations, we take n = (0, 0, 1), then U(t) =
exp[−i h̄−1ϕ(t)K3]. When ϕ(τ) = −2Nπ , we have U(τ) = eiNπ . In the time interval
[0, τ ], all solutions are cyclic with δ = Nπ , mod 2π . Let the initial state have
u(0) = h̄u0e0, where e0 = (sinh ξ0 cos φ0, sinh ξ0 sin φ0, cosh ξ0). Then u(t) = h̄u0e(t),
where e(t) = (sinh ξ0 cos(2ϕ + φ0), sinh ξ0 sin(2ϕ + φ0), cosh ξ0). It is then easy to find that
β = 2Nπu0 cosh ξ0, and γ = Nπ(1 − 2u0 cosh ξ0). On the other hand, the Hannay angle can
be found to be 	θg = 2Nπ(cosh ξ0 − 1). With these results it is easy to see that equation (67)
is valid.

(2) If n2 = −1, the solution reads

e(t) = [e0 + (e0 · ng)n] cosh 2ϕ + e
g

0 × ng sinh 2ϕ − (e0 · ng)n. (95)

To obtain the evolution matrix E(t), we should write down the components of n:

n = (cosh ξn cos 2ϕn, cosh ξn sin 2ϕn, sinh ξn) (96)
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where ξn and ϕn are arbitrary. The matrix E(t) is given by

E(t) = R(ϕn)S(ξn, 1)W
(a)
− (ϕ)S−1(ξn, 1)R−1(ϕn) (97)

where

W
(a)
− (ϕ) =


1 0 0

0 cosh 2ϕ −sinh 2ϕ

0 −sinh 2ϕ cosh 2ϕ


 . (98)

The eigenvalues of E(t) can be easily found to be {1, e2ϕ, e−2ϕ}. The eigenvector
corresponding to the eigenvalue 1 is η = n. Because n2 = −1, there exists no normalizable
cyclic solution at any time interval [0, τ ]. The evolution matrix Eq(t) can be found to be

Eq(t) = Rq(ϕn)W
(a)
q− (ϕ)R−1

q (ϕn) (99)

where

W
(a)
q− (ϕ) =

(
cosh ϕ exp(ξn) sinh ϕ

exp(−ξn) sinh ϕ cosh ϕ

)
. (100)

In this case Eq(τ) cannot take the value ±1, otherwise one should obtain W
(a)
q− (ϕ) = ±1. The

latter is obviously impossible, unless ϕ(τ) returns to 0, but this is not of interest.
(3) If n2 = 0, the solution reads

e(t) = 2ϕ2(e0 · ng)n + 2ϕe
g

0 × ng + e0. (101)

Up to a constant factor, which may be absorbed in ω(t), the components of n may be written
as

n = (cos 2ϕn, sin 2ϕn, 1) (102)

where ϕn is arbitrary. The matrix E(t) is given by

E(t) = R(ϕn)W
(a)
0 (ϕ)R−1(ϕn) (103)

where

W
(a)
0 (ϕ) =


1 − 2ϕ2 −2ϕ 2ϕ2

2ϕ 1 −2ϕ

−2ϕ2 −2ϕ 1 + 2ϕ2


 . (104)

The eigenvalues of E(t) can be easily found to be {1, 1, 1}, but there is only one eigenvector
η = n if ϕ �= 0. Thus we find an example where all eigenvalues are 1 but E(t) cannot be
diagonalized, let alone be a unit matrix. Because n2 = 0, there exists no normalizable cyclic
solution at any time interval [0, τ ]. The evolution matrix Eq(t) can be found to be

Eq(t) = Rq(ϕn)W
(a)
q0 (ϕ)R−1

q (ϕn) (105)

where

W
(a)
q0 (ϕ) =

(
1 2ϕ

0 1

)
. (106)

In this case Eq(τ) cannot take the value ±1 either, unless ϕ(τ) returns to 0 but this is not of
interest.

From the above results we see that the motion is finite when the Hamiltonian is elliptic and
infinite (assume that ϕ(t) can reach arbitrarily large values, for example, ϕ(t) is proportional
to t) in the other cases. But note that E(t) and Eq(t) are polynomials of ϕ in the critical case
and are exponential functions of it in the hyperbolic case. If n is time dependent, however, the
situation is not so simple. We will see that for a Hamiltonian of a definite nature, all patterns
of motion are possible.
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6.2. n = (n1 cos 2ϕ, n1 sin 2ϕ, n3)

Here n1 and n3 are constants, satisfying n2 = n2
3 −n2

1 = ±1 or 0, and ϕ = ϕ(t) is an arbitrary
function of t with ϕ(0) = 0. For convenience, we assume henceforth that ϕ(t) increases with
t monotonically and goes to infinity when t does. If ω(t) = λϕ̇(t) where λ is a constant,
analytic solutions are available.

By making a time-dependent unitary transformation U(t) = exp[−ih̄−1ϕK3]Ũ (t), it is
not difficult to obtain

U(t) = exp(−ih̄−1ϕK3) exp
(−ih̄−1�ϕK · n

g

f

)
(107)

where � > 0 and n2
f = ±1 or 0, and

�nf = (λn1, 0, λn3 − 1). (108)

If n2
f = 1, we see that cyclic solutions are available in [0, τ ] if the initial state is an eigenstate

of K · n
g

f and ϕ(τ) = Nπ , and more general cyclic solutions are available in some time
interval is � happens to be a rational number. However, for other time intervals, or when
n2

f = −1 or 0, the above time evolution operator, though explicit, does not tell much about
cyclic solutions. Consequently, it is necessary to study the matrices E(t) and Eq(t).

If e(t) = e[ϕ(t)] obeys

e′(ϕ) = −2λng(ϕ) × eg(ϕ) (109)

then equation (17a) is satisfied. Now we make a time-dependent linear transformation, written
in column vector form:

e(ϕ) = R(ϕ)f (ϕ) (110)

where the matrix R is defined in equation (90), but now the independent variable ϕ is time
dependent. The reduced equation for f (ϕ), written in ordinary vector form, reads

f ′(ϕ) = −2�n
g

f × f g(ϕ). (111)

Now nf is a constant vector, so the reduced equation is easy to solve. The form of the solution
depends on the nature of nf , and several cases should be treated separately.

(1) If n2 = 1 and λ ∈ (−∞, n3 − |n1|) ∪ (n3 + |n1|, +∞), or n2 = −1 and
λ ∈ (−n3 − |n1|,−n3 + |n1|), or n2 = 0 and λn3 < 1/2, then (λn3 − 1)2 > (λn1)

2. In
this case we define

� =
√

(λn3 − 1)2 − (λn1)2 cosh ξn = |λn3 − 1|/� sinh ξn = λn1/� (112)

then

nf = (sinh ξn, 0, ε cosh ξn) (113)

where ε = ε(λn3 − 1) is the sign function of λn3 − 1, that is, it equals 1 (−1) if λn3 − 1 > 0
(<0). The solution is

E(t) = R(ϕ)S(ξn, ε)W
(b)
+ (ϕ)S−1(ξn, ε) Eq(t) = Rq(ϕ)W(b)

q+ (ϕ) (114)

where

W(b)
+ (ϕ) =


cos 2�ϕ −sin 2�ϕ 0

sin 2�ϕ cos 2�ϕ 0
0 0 1




W(b)
q+ (ϕ) =

(
cos �ϕ ε exp(εξn) sin �ϕ

−ε exp(−εξn) sin �ϕ cos �ϕ

) (115)
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and the matrix Rq is defined in equation (94), but now the independent variable ϕ is time
dependent. In this case the motion is finite, no matter whether the Hamiltonian is elliptic,
hyperbolic or critical, as long as λ belongs to the appropriate region.

The eigenvector of E(t) corresponding to the eigenvalue 1 is (not normalized)

η(t) = (ε sinh ξn sin �ϕ cos ϕ, ε sinh ξn sin �ϕ sin ϕ, cosh ξn sin �ϕ cos ϕ + ε cos �ϕ sin ϕ).

(116)

If sin ϕ = 0 but sin �φ �= 0 at time τ , or sin �ϕ = 0 but sin φ �= 0 (if both are zero, then
E(τ) = 1), then η2(τ ) > 0 and there are cyclic solutions in the time interval [0, τ ]. In the
general case, we have

η2(t) = (sinh2 ξn sin2 �ϕ + 1) sin2[ϕ + ε arctan(cosh ξn tan �ϕ)] − sinh2 ξn sin2 �ϕ. (117)

This may be either positive or negative. If at time τ the quantity in the square bracket is close
to (N + 1/2)π , then η2(τ ) > 0, and there are cyclic solutions in the time interval [0, τ ]. If the
quantity is close to Nπ , and sin �ϕ is not too small, then η2(τ ) < 0, and there is no cyclic
solution in the time interval [0, τ ].

If � is a rational number, then there exist some τ such that Eq(τ) = ±1 and E(τ) = 1.
This is the case where more general cyclic solutions are available.

The time evolution operator can be easily obtained by our formalism in this case.
We take the simple solution e(t) = (ε sinh ξn cos 2ϕ, ε sinh ξn sin 2ϕ, cosh ξn) and using
equation (34a), after some operator algebra, we arrive at the result (107). For the subsequent
cases, however, our formalism is not convenient in calculating the time evolution operator,
since it is not easy to find a solution that is sufficiently simple and satisfies equation (17c).
Instead, the time-dependent unitary transformation that leads to the result (107) is convenient
in this respect. However, as pointed out before, the result (107) does not tell much about cyclic
solutions.

(2) If n2 = 1 and λ ∈ (n3 − |n1|, n3 + |n1|), or n2 = −1 and λ ∈ (−∞,−n3 − |n1|) ∪
(−n3 + |n1|, +∞), or n2 = 0 and λn3 > 1/2, then (λn3 −1)2 < (λn1)

2. In this case we define

� =
√

(λn1)2 − (λn3 − 1)2 cosh ξn = |λn1|/� sinh ξn = (λn1 − 1)/� (118)

then

nf = (ε cosh ξn, 0, sinh ξn) (119)

where ε = ε(λn1). The solution is

E(t) = R(ϕ)S(ξn, ε)W
(b)
− (ϕ)S−1(ξn, ε) Eq(t) = Rq(ϕ)W

(b)
q− (ϕ) (120)

where

W
(b)
− (ϕ) =


1 0 0

0 cosh 2�ϕ −sinh 2�ϕ

0 −sinh 2�ϕ cosh 2�ϕ




W
(b)
q− (ϕ) =

(
cosh �ϕ ε exp(εξn) sinh �ϕ

ε exp(−εξn) sinh �ϕ cosh �ϕ

)
.

(121)

In this case the motion is oscillating with exponentially increasing amplitude, no matter
whether the Hamiltonian is elliptic, hyperbolic or critical, as long as λ belongs to the
appropriate region.

The eigenvector of E(t) corresponding to the eigenvalue 1 is (not normalized)

η(t) = (ε cosh ξn sinh �ϕ cos ϕ, ε cosh ξn sinh �ϕ sin ϕ, sinh ξn sinh �ϕ cos ϕ

+ cosh �ϕ sin ϕ). (122)
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If sin ϕ = 0 but ϕ �= 0 at time τ , then η2(τ ) < 0 and there is no cyclic solution in the time
interval [0, τ ]. In the general case, we have

η2(t) = (cosh2 ξn sinh2 �ϕ + 1) sin2[ϕ + arctan(sinh ξn tanh �ϕ)] − cosh2 ξn sinh2 �ϕ.

(123)

This may be either positive or negative. If at time τ the quantity in the square bracket is close
to (N + 1/2)π , then η2(τ ) > 0, and there are cyclic solutions in the time interval [0, τ ]. If
the quantity is close to Nπ , and ϕ is not too small, then η2(τ ) < 0, and there is no cyclic
solution in the time interval [0, τ ]. In the present case there exists no τ such that ϕ(τ) �= 0
and Eq(τ) = ±1.

(3) If n2 = 1 and λ = n3 ± |n1|, or n2 = −1 and λ = −n3 ± |n1|, or n2 = 0 and
λn3 = 1/2, then (λn3 − 1)2 = (λn1)

2. Let ε = (λn3 − 1)/λn1 = ±1. The solution is

E(t) = R(ϕ)D(b)(ϕ) Eq(t) = Rq(ϕ)W
(b)
q0 (ϕ) (124)

where

D(b)(ϕ) =

1 − 2(λn1)

2ϕ2 −2ελn1ϕ 2ε(λn1)
2ϕ2

2ελn1ϕ 1 −2λn1ϕ

−2ε(λn1)
2ϕ2 −2λn1ϕ 1 + 2(λn1)

2ϕ2




W
(b)
q0 (ϕ) =

(
1 (1 + ε)λn1ϕ

(1 − ε)λn1ϕ 1

)
.

(125)

In this case the motion is oscillating with polynomially increasing amplitude, no matter the
Hamiltonian is elliptic, hyperbolic or critical, as long as λ takes the appropriate value.

The eigenvector of E(t) corresponding to the eigenvalue 1 is (not normalized)

η(t) = (λn1ϕ cos ϕ, λn1ϕ sin ϕ, ελn1ϕ cos ϕ + sin ϕ). (126)

If sin ϕ = 0 at time τ , then η2(τ ) = 0 and there is no cyclic solution in the time interval [0, τ ].
In the general case, we have

η2(t) = (
λ2n2

1ϕ
2 + 1

)
sin2[ϕ + ε arctan(λn1ϕ)] − λ2n2

1ϕ
2. (127)

This may be either positive or negative. If at time τ the quantity in the square bracket is close
to (N + 1/2)π , then η2(τ ) > 0, and there are cyclic solutions in the time interval [0, τ ]. If
the quantity is close to Nπ , and ϕ is not too small, then η2(τ ) < 0, and there is no cyclic
solution in the time interval [0, τ ]. In the present case there exists no τ such that ϕ(τ) �= 0
and Eq(τ) = ±1.

It should be noted that all three eigenvalues of E(t) are 1 when ϕ(t) = Nπ , and both of
the eigenvalues of Eq(t) are 1 when ϕ(t) = 2Nπ , but they are not unit matrices unless N = 0.

From the above results we see that for a Hamiltonian of a definite nature, say, elliptic,
the motion may have all possible patterns, depending on the value of λ. When λ < n3 − |n1|
or λ > n3 + |n1| the motion is finite. When n3 − |n1| < λ < n3 + |n1|, the motion is
oscillating with exponentially increasing amplitude. At the two critical values λ = n3 ± |n1|
the motion is oscillating with polynomially increasing amplitude. Something like a phase
transition happens here. When λ goes through the critical values, the motion changes from
one pattern to another, and at the critical values the motion exhibits an independent pattern. A
similar situation will be seen in the next subsection.

A common feature of the three different cases above is that in any time interval (τ0, +∞)

with τ0 > 0 one can always find some τ such that cyclic solutions are available in [0, τ ].
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6.3. n = (n1, n3 sinh 2ϕ, n3 cosh 2ϕ)

As before, n1 and n3 are constants, satisfying n2 = n2
3 − n2

1 = ±1 or 0, and ϕ = ϕ(t)

has the same property as in subsection 6.2. If ω(t) = λϕ̇(t) where λ is a constant, analytic
solutions are available. The time evolution operator can be obtained in a way similar to that
in subsection 6.2. The result is

U(t) = exp(−ih̄−1ϕK1) exp
(−ih̄−1�ϕK · n

g

f

)
(128)

where � > 0 and n2
f = ±1 or 0, and

�nf = (λn1 + 1, 0, λn3). (129)

Compared with the case in subsection 6.2, here even less about cyclic solutions can be seen
from the above result. Consequently, it is necessary to study the matrices E(t) and Eq(t).

If e(t) = e[ϕ(t)] obeys an equation of the form (109), then equation (17a) is satisfied.
As before we make a time-dependent linear transformation, written in column vector form:

e(ϕ) = T (ϕ)f (ϕ) (130)

where the matrix T, and another matrix Tq that will be used below, are defined as

T (ϕ) =

1 0 0

0 cosh 2ϕ sinh 2ϕ

0 sinh 2ϕ cosh 2ϕ


 Tq(ϕ) =

(
cosh ϕ −sinh ϕ

−sinh ϕ cosh ϕ

)
. (131)

The reduced equation for f (ϕ), written in ordinary vector form, has the form of equation (111),
but where �nf is given by equation (129). As before, several cases are to be treated separately.

(1) If n2 = 1 and λ ∈ (−∞, n1 − |n3|) ∪ (n1 + |n3|, +∞), or n2 = −1 and
λ ∈ (−n1 − |n3|,−n1 + |n3|), or n2 = 0 and λn1 < −1/2, then (λn3)

2 > (λn1 + 1)2.
In this case we define

� =
√

(λn3)2 − (λn1 + 1)2 cosh ξn = |λn3|/� sinh ξn = (λn1 + 1)/� (132)

then nf has the form in equation (113), but ε = ε(λn3). The solution is

E(t) = T (ϕ)S(ξn, ε)W
(b)
+ (ϕ)S−1(ξn, ε) Eq(t) = Tq(ϕ)W(b)

q+ (ϕ) (133)

where W
(b)
+ (ϕ) and W

(b)
q+ (ϕ) have been given in equation (115). In this case the motion is

oscillating with exponentially increasing amplitude.
The eigenvector of E(t) corresponding to the eigenvalue 1 is (not normalized)

η(t) = (ε(sinh ξn cosh ϕ sin �ϕ − sinh ϕ cos �ϕ),

cosh ξn sinh ϕ sin �ϕ, cosh ξn cosh ϕ sin �ϕ). (134)

If sin �ϕ = 0 but ϕ �= 0 at time τ , then η2(τ ) < 0 and there are no cyclic solutions in the
time interval [0, τ ]. In the general case, we have

η2(t) = cosh2 ξn sin2 �ϕ − (cosh2 ξn cosh2 ϕ − 1) sin2[�ϕ − arctan(tanh ϕ/sinh ξn)]. (135)

This may be either positive or negative. For large ϕ the second term is large as long as the
quantity in the square bracket is not close to Nπ , then η2(τ ) < 0, and there is no cyclic
solution. However, if ϕ(τ) is close to ϕ0 where ϕ0 is the root of tan �ϕ = tanh ϕ/sinh ξn,
the second term is very small and η2(τ ) > 0, then we have cyclic solutions in the time
interval [0, τ ]. The above transcendental equation has infinitely many roots, therefore in any
time interval (τ0, +∞) with τ0 > 0 we can always find some τ such that cyclic solutions are
available in [0, τ ]. In the present case there exists no τ such that ϕ(τ) �= 0 and Eq(τ) = ±1.
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(2) If n2 = 1 and λ ∈ (n1 − |n3|, n1 + |n3|), or n2 = −1 and λ ∈ (−∞,−n1 − |n3|) ∪
(−n1 + |n3|,∞), or n2 = 0 and λn1 > −1/2, then (λn3)

2 < (λn1 + 1)2. In this case we define

� =
√

(λn1 + 1)2 − (λn3)2 cosh ξn = |λn1 + 1|/� sinh ξn = λn3/� (136)

then nf has the form in equation (119), but ε = ε(λn1 + 1). The solution is

E(t) = T (ϕ)S(ξn, ε)W
(b)
− (ϕ)S−1(ξn, ε) Eq(t) = Tq(ϕ)W

(b)
q− (ϕ) (137)

where W
(b)
− (ϕ) and W

(b)
q− (ϕ) have been given in equation (121). In this case the motion is

exponentially infinite.
The eigenvector of E(t) corresponding to the eigenvalue 1 is (not normalized)

η(t) = (ε cosh ξn cosh ϕ sinh �ϕ

− sinh ϕ cosh �ϕ, sinh ξn sinh ϕ sinh �ϕ, sinh ξn cosh ϕ sinh �ϕ) (138)

which gives

η2(t) = sinh2 ξn sinh2 �ϕ − (cosh ξn cosh ϕ sinh �ϕ − ε sinh ϕ cosh �ϕ)2. (139)

If ε = −1, it is obvious that the second term is larger and η2(τ ) < 0, and thus there is no
cyclic solution in any time interval [0, τ ]. If ε = 1, the above result can be recast in the form

η2(t) = sinh2 ξn sinh2 �ϕ − (sinh2 ξn cosh2 ϕ + 1) sinh2[�ϕ − arctanh (tanh ϕ/ cosh ξn)].

(140)

In this case, cyclic solutions are possible. For example, when � < 1, the transcendental
equation tanh ϕ = cosh ξn tanh �ϕ has one root ϕ0. When ϕ(τ) is close to ϕ0, the second term
is very small and η2(τ ) > 0. Then we can have cyclic solutions in [0, τ ]. Another possible
case is ϕ(τ) � 1, which also leads to η2(τ ) > 0 if exp(|ξn|) > �. Then we also have cyclic
solutions in [0, τ ]. However, when ϕ(τ) is large, it is easy to see from equation (139) that
η2(τ ) < 0 regardless of the parameters ξn and �. Then there is no cyclic solution in [0, τ ].
In other words, no initial state can return to itself at a large time. This is rather different from
the last case. As before, there exists no τ such that ϕ(τ) �= 0 and Eq(τ) = ±1.

(3) If n2 = 1 and λ = n1 ± |n3|, or n2 = −1 and λ = −n1 ± |n3|, or n2 = 0 and
λn1 = −1/2, then (λn3)

2 = (λn1 + 1)2. Let ε = (λn1 + 1)/λn3 = ±1. The solution is

E(t) = T (ϕ)D(c)(ϕ) Eq(t) = Tq(ϕ)W
(c)
q0 (ϕ) (141)

where D(c)(ϕ) and W
(c)
q0 (ϕ) can be obtained from D(b)(ϕ) and W

(b)
q0 (ϕ) in equation (125),

respectively, by substituting ελn3 for λn1. In this case the motion is also exponentially
infinite, but different from the last case. Indeed, both W

(b)
− (ϕ) and W

(b)
q− (ϕ) in equation (137)

involve exponential functions of ϕ, while D(c)(ϕ) and W
(c)
q0 (ϕ) involve polynomials of it.

The eigenvector of E(t) corresponding to the eigenvalue 1 is (not normalized)

η(t) = (ελn3ϕ cosh ϕ − sinh ϕ, λn3ϕ sinh ϕ, λn3ϕ cosh ϕ) (142)

which gives

η2(t) = (λn3ϕ)2 − (ελn3ϕ cosh ϕ − sinh ϕ)2. (143)

If ελn3 < 0, it is obvious that the second term is larger and η2(τ ) < 0, and thus there is no
cyclic solution in any time interval [0, τ ]. If ελn3 > 0, cyclic solutions are possible. For
example, when |λn3| < 1, the transcendental equation tanh ϕ = ελn3ϕ has one nonzero root
ϕ0. When ϕ(τ) is close to ϕ0, the second term is very small and η2(τ ) > 0. Then we can have
cyclic solutions in [0, τ ]. Another possible case is ϕ(τ) � 1, which also leads to η2(τ ) > 0
and we have cyclic solutions in [0, τ ]. However, when ϕ(τ) is large, it is easy to see that
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η2(τ ) < 0 regardless of the parameters n3 and λ. Then there is no cyclic solution in [0, τ ]. In
other words, no initial state can return to itself at a large time. This is similar to the last case.
As before, there exists no τ such that ϕ(τ) �= 0 and Eq(τ) = ±1.

In this subsection we also see that different values of λ correspond to different patterns of
motion, for a Hamiltonian of a definite nature. But the cases are rather different from those in
subsection 6.2. In some of the cases here, there is no cyclic solution in any time interval.

6.4. n = (n1, n3 cosh 2ϕ, n3 sinh 2ϕ)

Here n1 and n3 are constants, satisfying n2 = −n2
3 − n2

1 = −1. This is different from the
previous cases, since n2 cannot take 1 and 0. ϕ = ϕ(t) has the same property as before.
If ω(t) = λϕ̇(t) where λ is a constant, analytic solutions are available. The time evolution
operator is given by equation (128) but now

�nf = (λn1 + 1, λn3, 0). (144)

The equation for e(t) can be solved in a way similar to that in subsection 6.3. We define

� =
√

(λn1 + 1)2 + (λn3)2 cos 2ϕn = (λn1 + 1)/� sin 2ϕn = λn3/� (145)

then nf = (cos 2ϕn, sin 2ϕn, 0). The solution is

E(t) = T (ϕ)R(ϕn)W
(b)
− (ϕ)R−1(ϕn) Eq(t) = Tq(ϕ)Rq(ϕn)W

(d)
q (ϕ)R−1

q (ϕn) (146)

where W
(b)
− (ϕ) is given in equation (121) and

W(d)
q (ϕ) =

(
cosh �ϕ sinh �ϕ

sinh �ϕ cosh �ϕ

)
. (147)

Obviously, the motion is exponentially infinite.
The eigenvector of E(t) corresponding to the eigenvalue 1 is (not normalized)

η(t) = (cos 2ϕn cosh ϕ sinh �ϕ

− sinh ϕ cosh �ϕ, sin 2ϕn cosh ϕ sinh �ϕ, sin 2ϕn sinh ϕ sinh �ϕ) (148)

which gives

η2(t) = −sin2 2ϕn sinh2 �ϕ − (cos 2ϕn cosh ϕ sinh �ϕ − sinh ϕ cosh �ϕ)2. (149)

It is obvious that η2(τ ) < 0 if ϕ(τ) �= 0, and there is no cyclic solution in any time interval
[0, τ ]. In other words, in this case no initial state can return to itself at a later time. As before,
there exists no τ such that ϕ(τ) �= 0 and Eq(τ) = ±1.

7. Summary

In this paper we develop a method for solving the Schrödinger equation of the generalized
time-dependent harmonic oscillator. This method, though not always convenient for practical
calculation of the time evolution operator, is very suitable for the study of cyclic solutions and
geometric phases. We concentrate our attention on Hamiltonians of general time dependence
and cyclic solutions in the time interval [0, τ ] with an arbitrarily given τ . A necessary and
sufficient condition for the existence of cyclic solutions in such time intervals is given. There
may exist some time interval in which more solutions are cyclic. This includes several cases
among which two are of more interest. In one of these cases all solutions are cyclic, and in
another all solutions with definite parity are cyclic. Criteria for the appearance of such cases are
given. The proportional relation between the nonadiabatic geometric phase and the classical
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Hannay angle is reestablished. However, this holds only for cyclic solutions with special initial
conditions. For more general cyclic solutions encountered in the above cases, the nonadiabatic
geometric phase contains in general an extra term in addition to the one proportional to the
classical Hannay angle. Several examples are studied where the Hamiltonians are relatively
simple and analytic solutions are available. In these examples the existence of cyclic solutions
is discussed in detail. Many possibilities are exhibited: (1) cyclic solutions are available for all
τ ; (2) cyclic solutions available for some τ and such τ may be found in any interval (τ0, +∞)

with τ0 > 0; (3) cyclic solutions available for some τ but such τ exist only in some finite
interval (0, τ0); (4) cyclic solutions are not available at all. From the point of view of wave
packets, the motion in these examples also exhibits various patterns. For a Hamiltonian of a
definite nature, say, elliptic, several different patterns of motion are possible, depending on the
value of some parameter in the Hamiltonian. There exists some critical value of the parameter
at which some kind of phase transition happens. When the parameter goes through it, the
motion changes from one pattern to another, and at the critical value itself the motion has an
independent pattern.
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Appendix

Our approach to the solution of the Schrödinger equation with time-dependent Hamiltonians
was first used in our previous paper [36] for the system of general spin moving in an arbitrarily
varying magnetic field, and is further developed in this paper. The Hamiltonian for the spin
in a magnetic field is an element of the SO(3) algebra, while that for the time-dependent
harmonic oscillator is one of the SO(2, 1) algebra. In this appendix we briefly discuss how to
extend the formalism to a system where the Hamiltonian is an element of a more general Lie
algebra.

Consider a Lie algebra with the generators Ka (a = 1, 2, . . . , l), satisfying the
commutation relation

[Ka,Kb] = ifab
cKc (A.1)

where fab
c are the structure constants. Define

gab = fac
dfbd

c = tr (fafb) (A.2)

where fa is a matrix whose element is defined by (fa)b
c = fab

c. It is obviously symmetric:
gba = gab. For a semisimple Lie algebra, the matrix gab is not singular, and thus invertible.
Its inverse matrix is denoted by gab, satisfying gacgcb = δa

b. The matrices gab and gab

act like metric tensors and can be used to lower and raise vector indices. For the SO(2, 1)

algebra with the generators given in equation (2), one should find gab = 8 diag (1, 1,−1)

and gab = 1
8 diag (1, 1,−1). Thus the metric used in the main text is different from this by a

constant factor.
For simplicity we consider a semisimple Lie algebra of rank 2, say, the SU(3) algebra.

It contains two mutually commuting operators which generate the Cartan subalgebra. Thus
there are two Casimir operators, given by

C2 = gabKaKb C3 = habcKaKbKc (A.3)
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where habc is obtained by raising the indices of habc, and the latter is defined by

habc = tr (fafbfc). (A.4)

Now consider a physical system whose Hamiltonian is an element of the above semisimple
Lie algebra. More specifically,

H(t) = h̄ωa(t)Ka (A.5)

where ωa(t) are time-dependent frequency parameters, and the generators Ka are
dimensionless. We define a l-component vector u(t) = (u1(t), u2(t), . . . , ul(t)) by

ua(t) = 〈Ka〉 ≡ (ψ(t),Kaψ(t)) (A.6)

where ψ(t) is an arbitrary state of the system, that is, a solution to the Schrödinger equation.
It is easy to show that it satisfies the equation

u̇a(t) = fab
cωb(t)uc(t). (A.7)

This is a system of l linear differential equations. Now we define a l-component vector
e(t) = (e1(t), e2(t), . . . , el(t)) by the same equation, that is

ėa(t) = fab
cωb(t)ec(t) (A.8)

and a nontrivial (nonzero) initial condition. It is then straightforward to show that the two
operators linear in Ka , defined by

L1(t) = gabea(t)Kb L2(t) = habcea(t)eb(t)Kc (A.9)

are invariant operators, and they commute with each other. Therefore, the invariant operators
can be obtained by solving a linear differential equation for e(t). It can be similarly shown
that gabea(t)eb(t) and habcea(t)eb(t)ec(t) are also time-independent quantities. Thus among
the l components of e(t) only l − 2 are independent variables. We can parametrize e(t) in
some way similar to that in equation (15). The independent parameters will be denoted by
ξ(t) = (ξ1(t), ξ2(t), . . . , ξl−2(t)).

The subsequent steps in obtaining the time evolution operator depend on the details of the
Lie algebra. We can give only a rough sketch here.

The crucial step is to find a unitary operator Q(t) = Q(ξ(t)) such that

L1(t) = Q(t)H1Q
†(t) L2(t) = Q(t)H2Q

†(t) (A.10)

where H1 and H2 are generators of the Cartan subalgebra. It might be difficult to prove the
existence of Q(t) in the general case. For a specific Lie algebra, however, one can try to find
it by practical calculations like those in section 2. Since H1 and H2 commute with each other,
they have a complete set of common eigenstates. These will be denoted by {ψnm}, satisfying

H1ψnm = λnψnm H2ψnm = µmψnm. (A.11)

Obviously, λn and µm are also the eigenvalues of L1(t) and L2(t), respectively.
Next we will show that if the initial state ψ(0) of the system satisfies

L1(0)ψ(0) = λnψ(0) L2(0)ψ(0) = µmψ(0) (A.12)

then the state ψ(t) at later times will satisfy

L1(t)ψ(t) = λnψ(t) L2(t)ψ(t) = µmψ(t). (A.13)

We use here a different proof from the induction one employed in section 3. It is easy to show
that ψ(1)(t) ≡ [L1(t) − λn]ψ(t) satisfies

i h̄∂tψ
(1)(t) = H(t)ψ(1)(t) (A.14)
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where the equation i h̄∂tL1(t) + [L1(t),H(t)] = 0 has been used. Consequently, ψ(1)(t) =
U(t)ψ(1)(0), where U(t) is the time evolution operator of the Schrödinger equation. Because
equation (A.12) leads to ψ(1)(0) = 0, we have ψ(1)(t) = 0, and thus the first equation in
(A.13) is obtained. The second one can be proved in a similar way.

On account of the above results, we have

ψ(t) = exp[iαnm(t)]Q(t)ψnm (A.15)

where αnm(t) is a phase that cannot be determined by the eigenvalue equation. However, it
is not arbitrary. By the requirement that ψ(t) satisfies the Schrödinger equation, it can be
determined in terms of ξ(t). Finally, one should manage to replace λn appearing in αnm(t)

and αnm(0) by H1, and µm by H2, and obtain

ψ(t) = Q(t) exp[iα(H1,H2, t)]Q
†(0)ψ(0). (A.16)

Because all the operators in the above equation are independent of n and m, and because the
set {ψnm} is complete, we obtain the time evolution operator

U(t) = Q(t) exp[iα(H1,H2, t)]Q
†(0). (A.17)

The time dependence in both Q(t) and α(H1,H2, t) comes from ξ(t) (and ωa(t) of course).
Therefore, the time evolution operator is also obtained by solving the linear different equation
for e(t).
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